Enhanced Expression And Activity of NAD(P)H Oxidase in Mouse Periaqueductal Gray Tissue During Morphine Antinociceptive Tolerance

THE REAL PROPERTY AND A DESCRIPTION OF A

Department of Pharmacology & Toxicology

Virginia Commonwealth University

Emily C. Wright

Background: Periaqueductal Gray (PAG)

- Area surrounding cerebral aqueduct in brain stem levels 9 and 10
- Contains receptors for opiate peptides which can eliminate the perception of pain

Background: Known Effect of Morphine on PAG

Pain reduction takes place when opiates turn on inhibitory neurons in PAG

- Antinociceptive tolerance may result from perpetual action of opiates on PAG
- Morphine causes increase in intracellular [Ca+] in the PAG in chronic morphine treatment (CMT) mice

Role of NAD(P)H Oxidase in Morphine Induced Tolerance

Question

Is NAD(P)H oxidase (subunits p47 and NOX-2) present in the PAG?

-Approach: Immunohistochemistry

(process used to localize proteins in cells of tissue sections)

Hypothesis

NAD(P)H oxidase plays an important role in morphineinduced tolerance.

Western Blot Analysis of the NOX-2 subunit of NAD(P)H Oxidase in PAG

Western Blot Analysis of the p47 subunit of NAD(P)H Oxidase in PAG

Gene Expression Level of the NOX-2 subunit of NAD(P)H Oxidase in PAG

Gene Expression Level of the p47 subunit of NAD(P)H Oxidase in PAG

Protocol

- 3 groups of mice: naïve, placebo pellet, and morphine pellet (morphine tolerant)
 Performed a two-day immunohistochemistry protocol that included over-night
 - incubation with the primary antibody
- Qualitatively analyzed results by taking pictures of images obtained by microscope

Figure 1: Expression of the p47 antigen in the periaqueductal gray and cortex of placebo pellet mouse brain tissue. A) 400X magnification. B) 1000X magnification.

Figure 2: Expression of the NOX-2 antigen in the periaqueductal gray and cortex of placebo pellet mouse brain tissue. A) 400X magnification. B) 1000X magnification.

ALCONT AND TAXABLE AND A ALCONT OF THE ALCONT OF THE ALCONT ON A DECEMBER OF THE OWNER AND A DECEMBER OF THE ALCONT OF THE ALCONT

NAD(P)H oxidase is present in the PAG of mice brain tissue

Future Direction

E NEGRETA ALTARIA DE LA CARTA DE LA CARTA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA COM ANTAL COMPANIA DE L

Perform ESR to detect the levels of superoxide in the PAG

Perform HPLC to assess the functioning of NAD(P)H Oxidase in the PAG

Conclusion

NEW YORK AND THE REPORT OF THE R

There are some differences between rat and mouse kidney tissue in their expression of the NOX isoforms

Future Direction

RESERVE AND THE REPORT OF T

Positive controls for NOX-3 and NOX-4 antigens in mice and rat kidney tissue

Acknowledgements

Dr. Pin-Lan Li, M.D., Ph.D.
Dr. William Dewey, Ph.D.
Labs of Dr. Li and Dr. Dewey
Program for Summer Research Experience of Undergraduates in Pharmacology & Toxicology

Bibliography

- Bagley, E. E., et al. Opioid tolerance in periaqueductal gray neurons isolated from mice chronically treated with morphine. (2005).
- Li, C., et al. Enhanced Expression and Activity of NAD(P)H Oxidase in Mouse Periaqueductal Gray Neurons During Morphine Antinociceptive Tolerance. (2005).
- Periaqueductal Gray.

http://www.neuroanatomy.wisc.edu/virtualbrain/BrainStem/24PAG.html. (2006).

The Mouse Brain Library. <u>http://www.mbl.org</u>. (2005).